On the locating chromatic number of Kneser graphs

نویسندگان

  • Ali Behtoei
  • Behnaz Omoomi
چکیده

Let c be a proper k-coloring of a connected graph G andΠ = (C1, C2, . . . , Ck) be an ordered partition of V (G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple c Π (v) := (d(v, C1), d(v, C2), . . . , d(v, Ck)), where d(v, Ci) = min{d(v, x)|x ∈ Ci}, 1 ≤ i ≤ k. If distinct vertices have distinct color codes, then c is called a locating coloring. The minimum number of colors needed in a locating coloring of G is the locating chromatic number of G, denoted by χL (G). In this paper, we study the locating chromatic number of Kneser graphs. First, among some other results, we show that χL (KG(n, 2)) = n − 1 for all n ≥ 5. Then, we prove that χL (KG(n, k)) ≤ n − 1, when n ≥ k2. Moreover, we present some bounds for the locating chromatic number of odd graphs. © 2011 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

The locating chromatic number of the join of graphs

‎Let $f$ be a proper $k$-coloring of a connected graph $G$ and‎ ‎$Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into‎ ‎the resulting color classes‎. ‎For a vertex $v$ of $G$‎, ‎the color‎ ‎code of $v$ with respect to $Pi$ is defined to be the ordered‎ ‎$k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$‎, ‎where $d(v,V_i)=min{d(v,x):~xin V_i}‎, ‎1leq ileq k$‎. ‎If‎ ‎distinct...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Local chromatic number and the Borsuk-Ulam Theorem

The local chromatic number of a graph was introduced in [13]. It is in between the chromatic and fractional chromatic numbers. This motivates the study of the local chromatic number of graphs for which these quantities are far apart. Such graphs include Kneser graphs, their vertex color-critical subgraphs, the stable Kneser (or Schrijver) graphs; Mycielski graphs, and their generalizations; and...

متن کامل

Random Kneser graphs and hypergraphs

A Kneser graph KGn,k is a graph whose vertices are all k-element subsets of [n], with two vertices connected if and only if the corresponding sets do not intersect. A famous result due to Lovász states that the chromatic number of a Kneser graph KGn,k is equal to n − 2k + 2. In this paper we discuss the chromatic number of random Kneser graphs and hypergraphs. It was studied in two recent paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 159  شماره 

صفحات  -

تاریخ انتشار 2011